

Adaptation of LLMs

https://adapt-llm.github.io/

Zixuan Ke

Yifei Ming

Shafiq Joty

Minimal LLM Basics

Prerequisites

Training ML Models

- Learning algorithms related:
 - o SGD, Learning rate, AdamW, Batch size
- Model architecture related:
 - Cross and Self Attentions
 - o Encoder-Decoder
 - o Transformers

Basic LLM concepts

- Transformer decoder
- Next token prediction
- Tokenization, sequence/context length
- In-context learning:
 - o Zero- and few-shot learning

This Tutorial

Goals

Build Foundational understanding for LLM Adaptation

- Evaluation methods
- Key concepts of LLM adaptation
- Key techniques for LLM adaptation
 - Data perspective
 - Model perspective
- Key trends

Table of contents

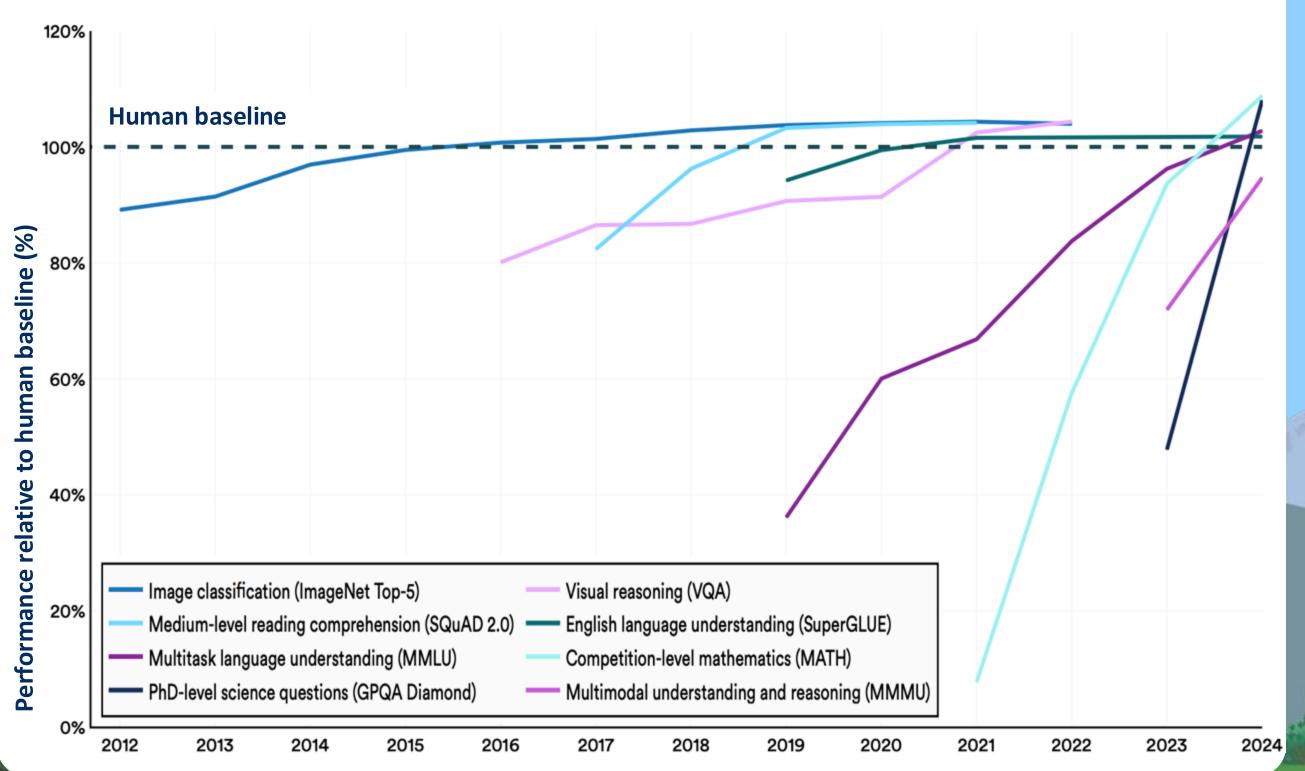
Introduction and Motivation ~ 40min

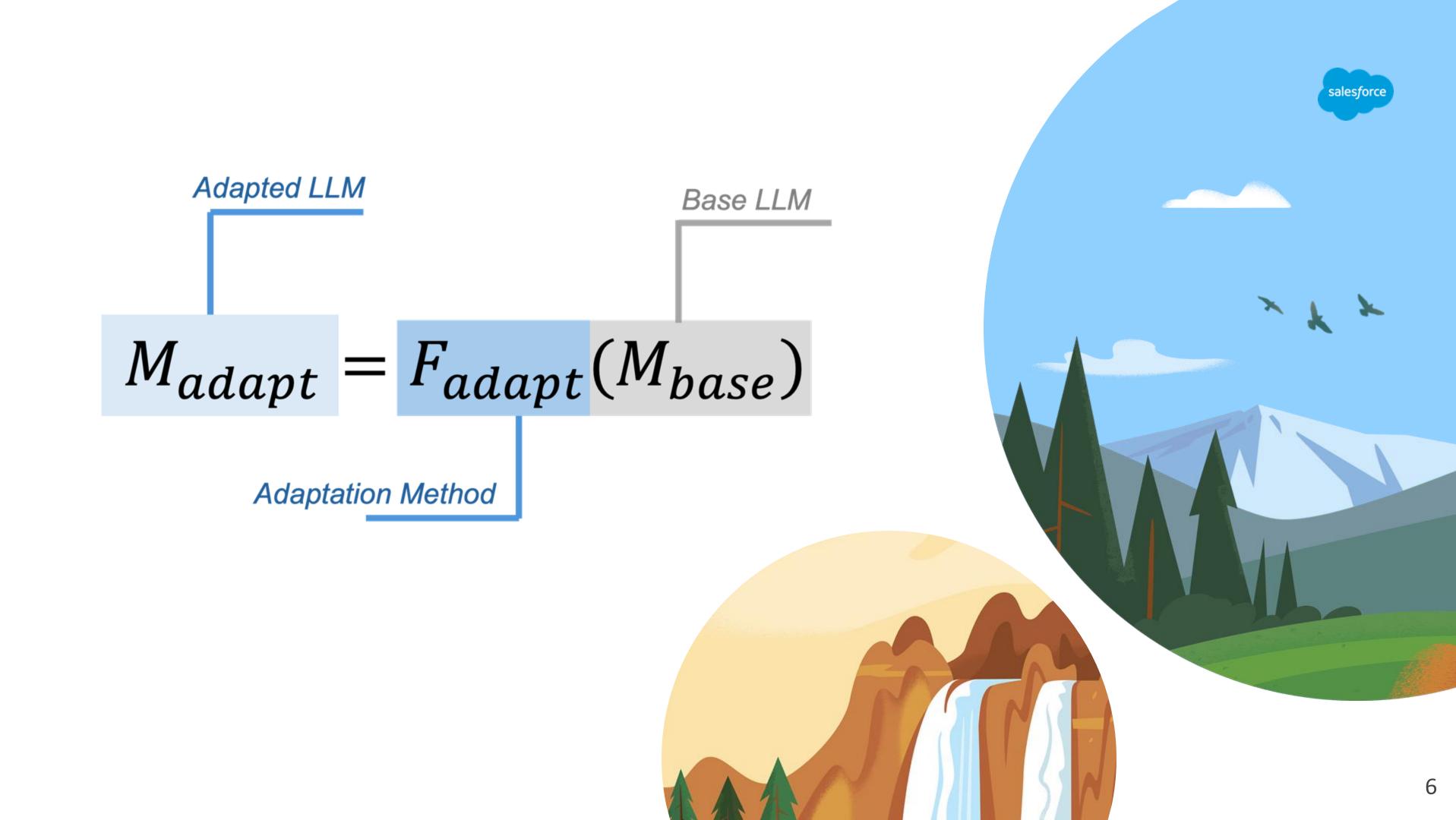
Evaluation and Benchmark ~20min

Parametric Knowledge Adaptation ~ 60min

Semi-Parametric Knowledge Adaptation ~ 30min

Summary, Discussion, QAs ~ 30min





Why We Still Need Adaptation

Adaptation → Performance ↑

Domain

SaulLM-54B & SaulLM-141B: Scaling Up Domain Adaptation for the Legal Domain

Pierre Colombo Equall

Telmo Pires

Equall

Malik Boudiaf Equall

Rui Melo Equall

BioMedLM: A 2.7B Parameter Language Model Trained On Biomedical Text

Elliot Bolton^{1†}, Abhinav Venigalla², Michihiro Yasunaga¹, David Hall¹, Betty Xiong¹, Tony Lee¹, Roxana Daneshjou¹, Jonathan Frankle²,

Demystifying Domain-adaptive Post-training for Financial LLMs

Zixuan Ke, Yifei Ming, Xuan-Phi Nguyen, Caiming Xiong and Shafiq Joty Salesforce AI Research

{zixuan.ke,yifei.ming,xnguyen,cxiong,sjoty}@salesforce.com

Project Page: https://github.com/SalesforceAIResearch/FinDAP

😂 Datasets: https://huggingface.co/datasets/Salesforce/FinEval

Task

SFR-RAG: Towards Contextually Faithful LLMs

Foundational Autoraters: Taming Large Language Models for Better Automatic Evaluation

PROMETHEUS: INDUCING FINE-GRAINED EVALUATION CAPABILITY IN LANGUAGE MODELS

Seungone Kim 1,2*† Jamin Shin 2,3*† Yejin Cho 1*† Joel Jang 4 Shayne Longpre 5 Hwaran Lee 2,3 Sangdoo Yun 2,3 Seongjin Shin 3 Sungdong Kim 1,2,3 James Thorne 1 Minjoon Seo 1†

¹KAIST AI ²NAVER AI Lab ³NAVER Cloud ⁴University of Washington ⁵MIT

Adaptation → Performance ↑

Domain/Language

Code Llama: Open Foundation Models for Code

Baptiste Rozière[†], Jonas Gehring[†], Fabian Gloeckle^{†,*}, Sten Sootla[†], Itai Gat, Xiaoqing Ellen Tan, Yossi Adi^o, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve[†]

Meta AI

CHIMED-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences

Yuanhe Tian^{♠♥}*, Ruyi Gan^{♠♣}*, Yan Song^{♠†}, Jiaxing Zhang[♣], Yongdong Zhang[♠]

ALLaM: Large Language Models for Arabic and English

Task

How to Train Long-Context Language Models (Effectively)

Tianyu Gao* Alexander Wettig* Howard Yen Danqi Chen Princeton Language and Intelligence, Princeton University {tianyug,awettig,hyen,danqic}@cs.princeton.edu

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

DeepSeek-AI

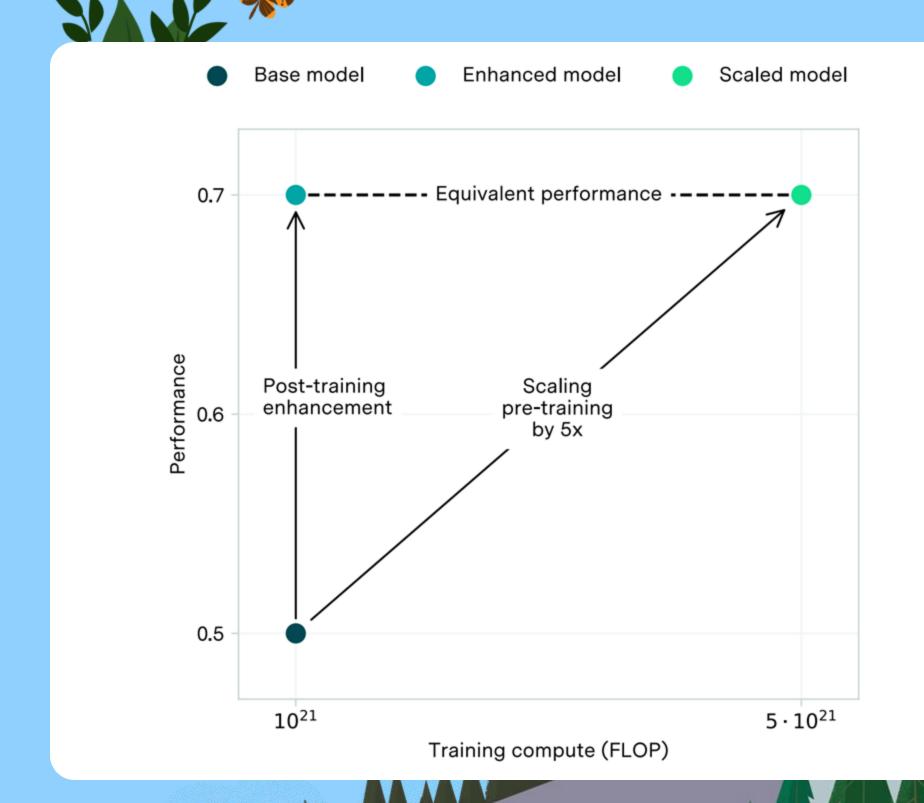
research@deepseek.com

Toolformer: Language Models Can Teach Themselves to Use Tools

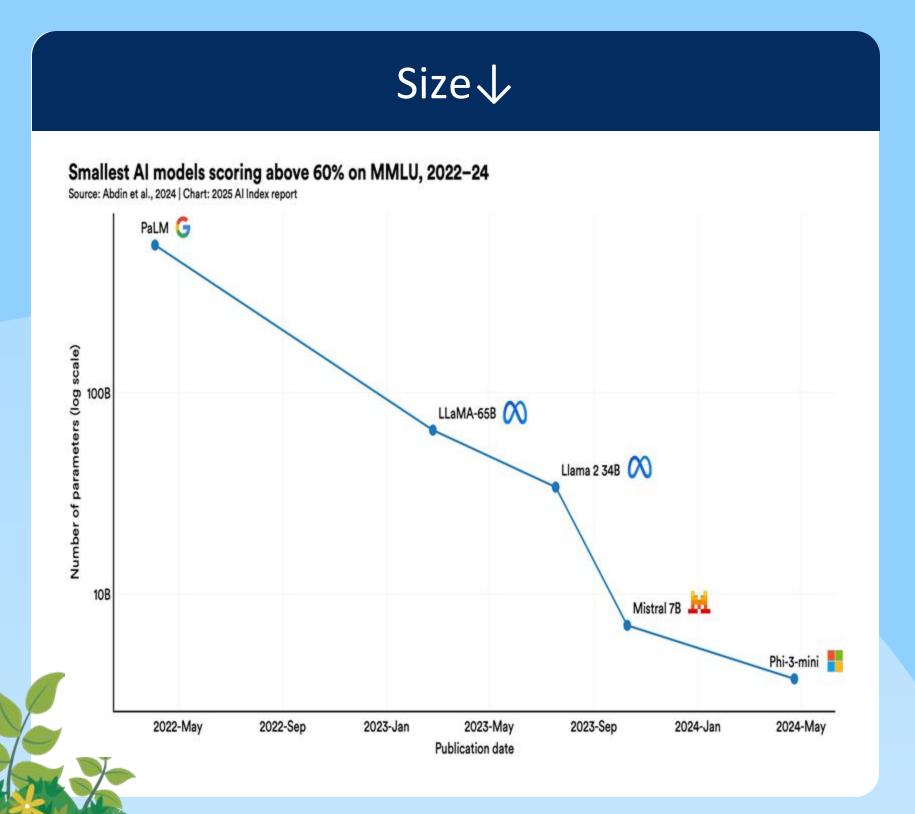
Timo Schick Jane Dwivedi-Yu Roberto Dessì[†] Roberta Raileanu Maria Lomeli Luke Zettlemoyer Nicola Cancedda Thomas Scialom

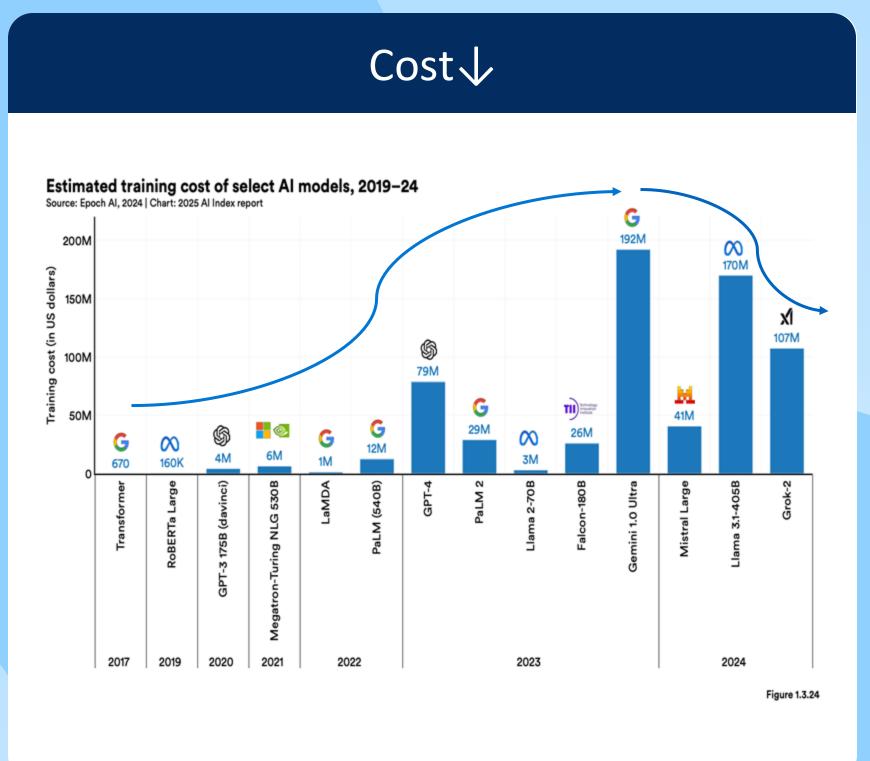
Meta AI Research †Universitat Pompeu Fabra

Adaptation → Performance↑ Cost↓



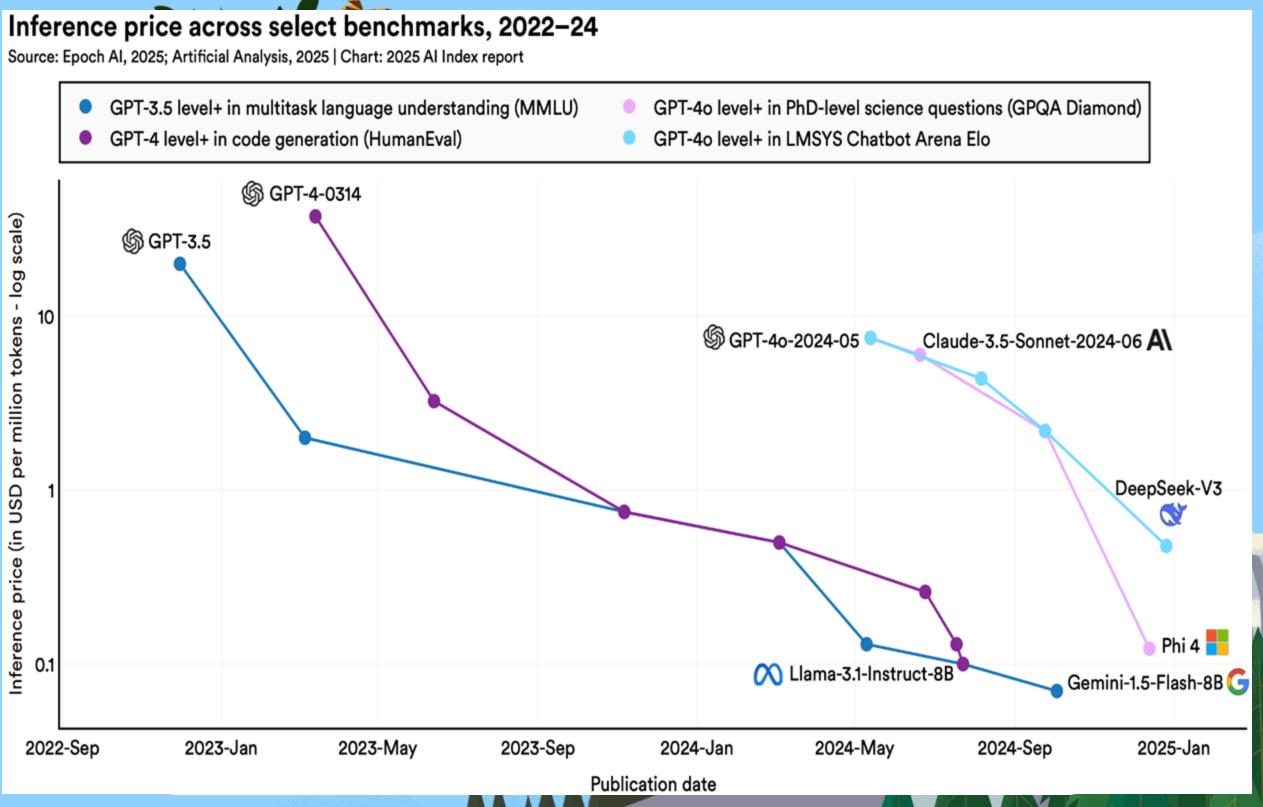
Training is Becoming Increasingly Affordable





REPARAS 4 AL INDEX PREPARTS FETANT GROWN AIR, ARZEL 2025

Lower cost- to-serve for small domain or task specific models



Adaptation in the Era of Experience

Our World is changing — LLMs must adapt accordingly

- Long-tail domains/tasks
- Emerging domains/tasks

To go beyond human data, LLMs need to adapt through their own experience

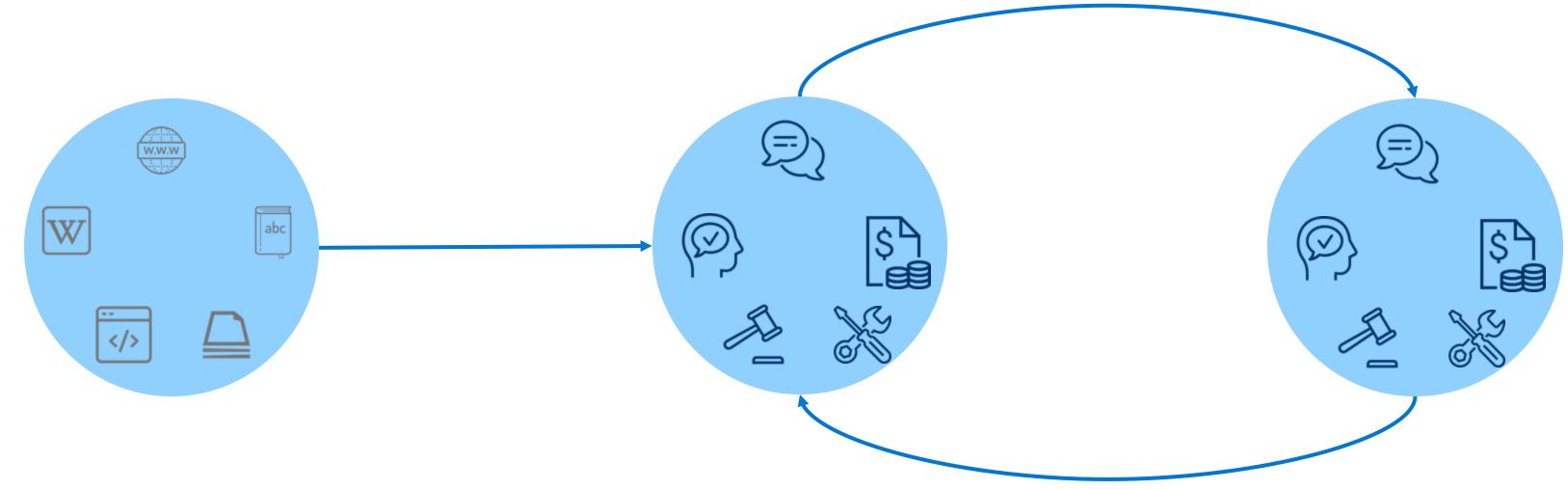
Self-discover own knowledge + adaptation

My personal bet is we're going to see a mixture of general models and specialist models that are much more focused

Dan Klein, professor at UC Berkeley (Mar, 2025)

Key Concepts in Adaptation

LLM Workflow



Pre-training

Large-scale data, Extensive computation

Adaptation

Evaluation

General capabilities

(e.g., chat, reasoning)

Specialized capabilities (e.g., finance, tool-use)

Adaptation – Regimes

In-context Learning

Single LLM, zero-shot, few-shot, **No** parameters updated

Learning to Adapt

Update the LLM parameters to adapt
LLM to specific
task/domain/environment

Main focus of this tutorial

Inference Scaling

Multiple LLM calls, No parameters updated

Adaptation – Paradigms

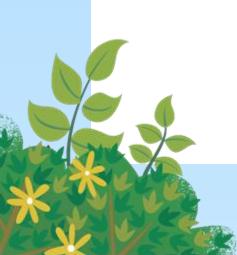
Parametric Knowledge

Update LLM parameters, without interacting with external environment (e.g., domain- and task-specific LLMs)

Semi-Parametric Knowledge

Update LLM parameters to interact with external environment (e.g., RAG)

This represents the shift from standalone LLMs → agents



Adaptation – A Comparison

Pre-training

Learn the foundation knowledge, but the raw pretrained LLMs are **neither** safe **nor** robust for public use and interactions (thus "alignment/adaptation" is required)

Post-training

Convention:

Adaptation = Adapt model from source to target distribution

LLM Era:

Adaptation ≈ Post-training

Continual Learning

Convention: Learning a sequence of disjoint tasks;

Main focus: prevent

forgetting

Side focus: encourage

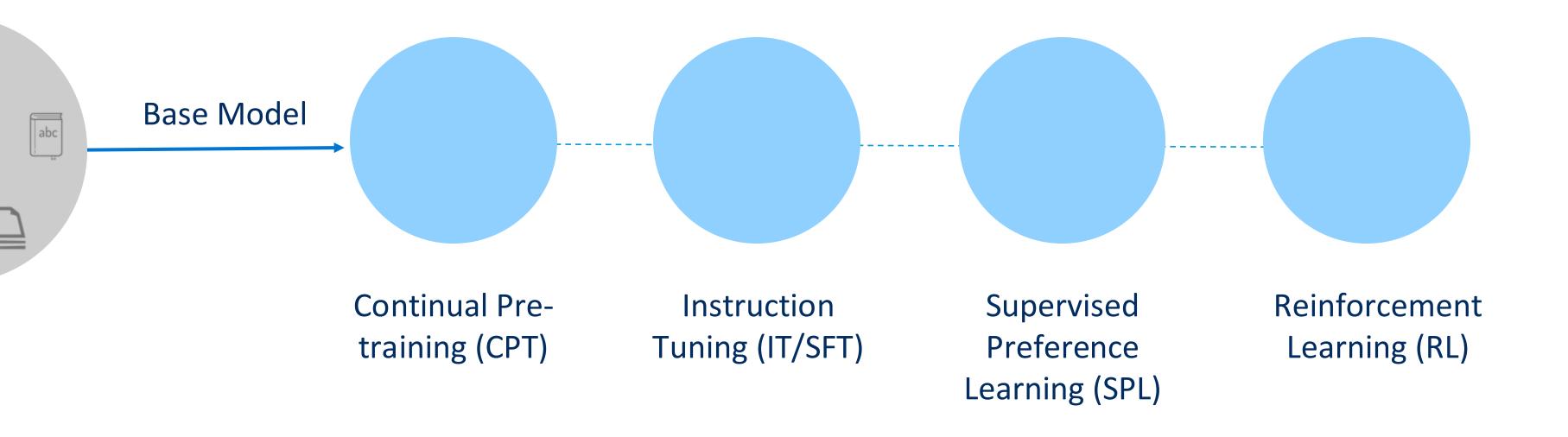
transfer

LLM era: Tasks not disjoint;

Main focus: encourage

transfer + prevent forgetting

Adaptation – Four Most Popular Methods



Adaptation – Four Most Popular Methods

<|begin_of_text|>
SEC Finalizes ARS Settlement
to Provide \$7 Billion in
Liquidity to Wachovia
Investors...
<|end_of_text|>

Continual Pre-training

Inject or emphasize target knowledge (e.g., domain knowledge)

```
<|system|>
You are a helpful assitant
<|end|>
<|user|>
How many helicopters can you eat?
<|end|>
<|assistant|>
{Answer goes here}
```

Instruction Tuning

Formatting and instruction following

```
<|prompt|>what are the minimum
lease payments in 2022
<|end|>
<|rejected|>
$17,188 / $34,356 * 100
= 49.98%.
<|end|>
<|chosen|>
$17,188 / $34,356 * 100
= 49.99%.
<|end|>
```

Sup. Preference Learning

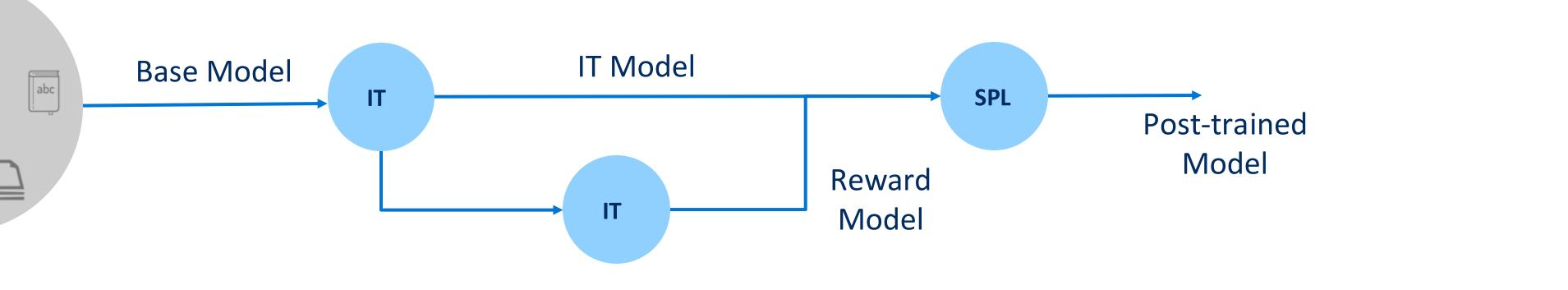
Align to human or Al preferences

<|prompt|>
I'm not sure if it's the right
to do and could use some
outside opinions.
TL;DR:
<|end|>

Reinforcement Learning

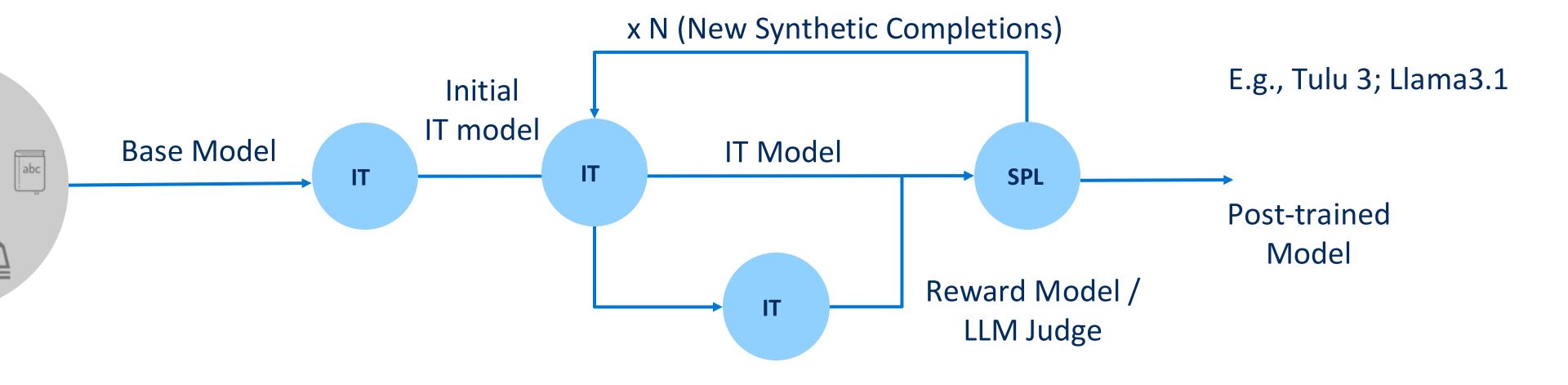
Boost performance on complicated (and verifiable) tasks (e.g., reasoning)

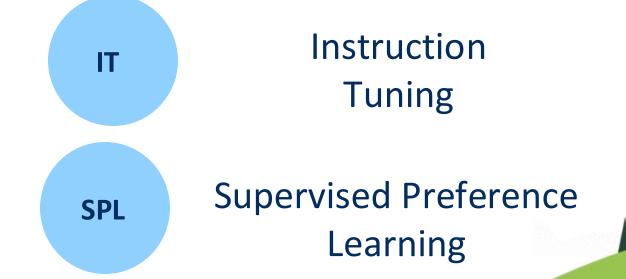
E.g., Tulu 1,2; Instruct GPT

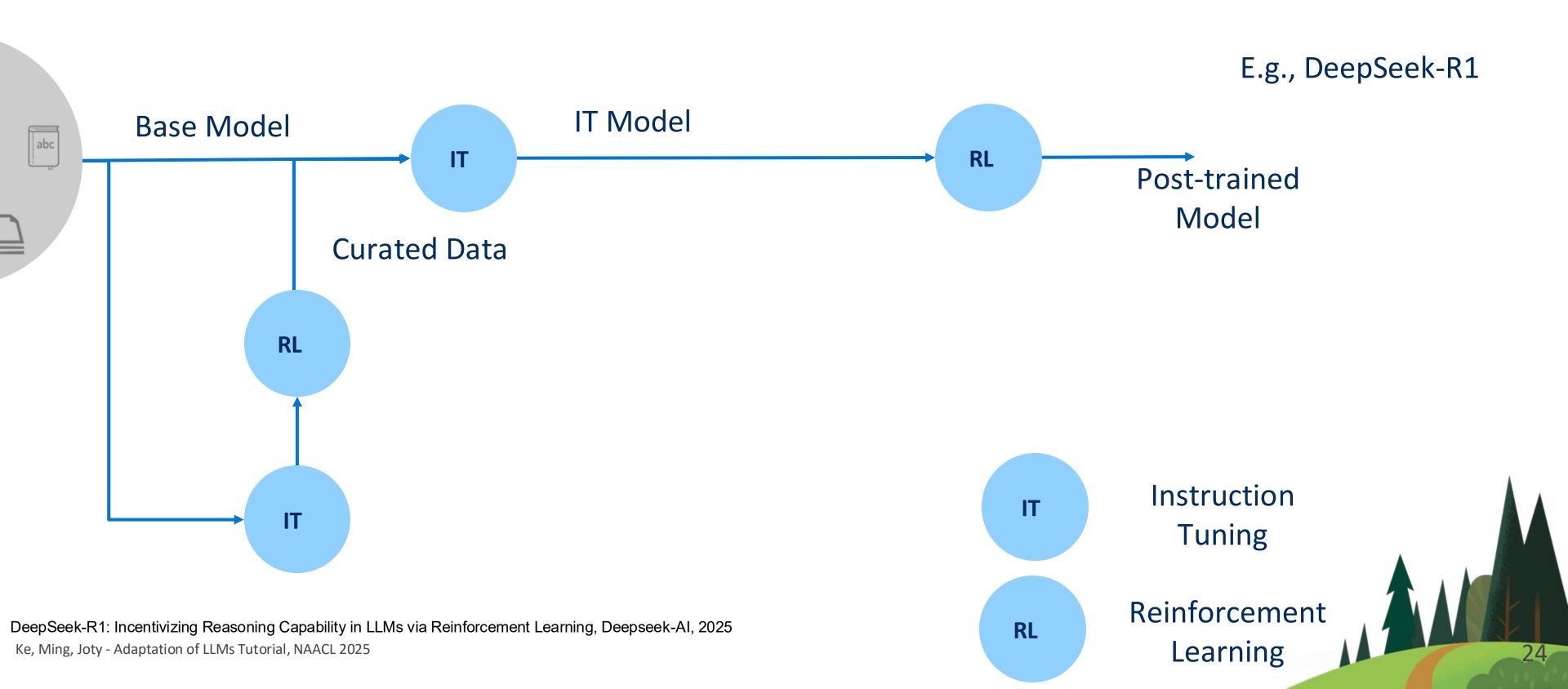


SPL Supervised Preference Learning

Instruction Tuning







Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025

CPT Continual Pre-training

Supervised Preference Learning

..... We should expect more to come

Research Questions in LLM Adaptation

Data Perspective

Seed Data: What gives a good data mixture and how to obtain high-quality data? (often limited in amount)

Data Recipe: Given the limited amount of seed data, how to synthesize or construct high-quality data?

Model Perspective

Methods: What are the basic methods and their variants of LLM adaptation?

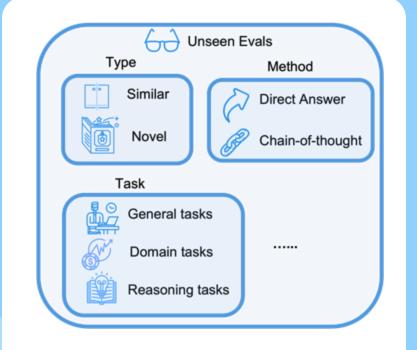
Training Workflow: What is the effective workflow to connect those basic methods?

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

Adaptation – Four Considerations

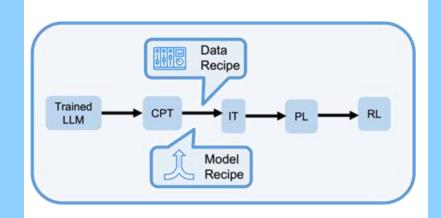
Core Capabilities

What capabilities do you actually care about?



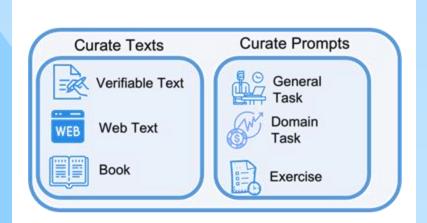
Evaluation

How do you measure the progress toward targeted capabilities?



Training Recipe

How do you construct useful data from your seed data and what is your model recipe?



Seed Data

What seed data should be used to implement your training recipe?

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025