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Training ML Models Basic LLM concepts

e Learning algorithms related: Transformer decoder

o SGD, Learning rate, AdamW, Batch size Next token prediction

Tokenization, sequence/context length

, In-context learning:
e Model architecture related: N S
O Cross and Self Attentions

O Encoder-Decoder
O Transformers
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Build Foundational understanding for LLM Adaptation

e Evaluation methods
e Key concepts of LLM adaptation

e Key techniques for LLM adaptation
o Data perspective
O Model perspective

Key trends
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Introduction and Motivation ~ 40min
Evaluation and Benchmark ~20min

Parametric Knowledge Adaptation ~ 60min

Semi-Parametric Knowledge Adaptation ~ 30min

Summary, Discussion, QAs ~ 30min



LLM vs. human performance
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Adapted LLM Base LILM

adapt = F adapt(Mbase)

Adaptation Method \




Why We Still Need
Adaptation



Adaptation - Performance
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Adaptation - Performance

Domain/Language Task
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Al capabilities can be significantly improved without expensive retraining, Davidson et al., 2023



Training is Becoming Increasingly Affordable o
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Smallest Al models scoring above 60% on MMLU, 2022-24
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Inference price across select benchmarks, 2022-24
Source: Epoch Al, 2025; Artificial Analysis, 2025 | Chart: 2025 Al Index report
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Adaptation in the Era of
Experience

Our World is changing — LLMs must adapt accordingly

e Long-tail domains/tasks
e Emerging domains/tasks

To go beyond human data, LLMs need to adapt through their own experience

e Self-discover own knowledge + adaptation

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025
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My personal bet is we’re going to see a
mixture of general models and specialist
models that are much more focused

Dan Klein, professor at UC Berkeley (Mar, 2025)




Key Concepts In
Adaptation



LLM Workflow
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Pre-training Adaptation Evaluation
General capabilities

Large-scale data,
Extensive computation (e.g., chat, reasoning)
Specialized capabilities (e.g.,
finance, tool-use)

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025
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Learning to Adapt

Inference Scaling

In-context Learning Update the LLM parameters to adapt

LLM to specific

Single LLM, zero-shot, task/domain/environment Multiple LLM calls, No

few-shot, No , , , parameters updated
parameters updated Main focus of this tutorial




Adaptation — Paradigms

Parametric Knowledge Semi-Parametric Knowledge

Update LLM parameters, without interacting Update LLM parameters to interact with
with external environment (e.g., domain- and external environment (e.g., RAG)
task-specific LLMs)
This represents the shift from standalone
LLMs — agents

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

18




Adaptation — A Comparison

Post-training Continual Learning

Learn the foundation Convention: Convention: Learning a
knowledge, but the raw pre- Adaptation = Adapt model from sequence of disjoint tasks;
trained LLMs are neither source to target distribution Main focus: prevent

safe nor robust for public forgetting

use and interactions (thus LLM Era: Side focus: encourage
“alignment/adaptation” is Adaptation = Post-training transfer

required)

LLM era: Tasks not disjoint;
Main focus: encourage
transfer + prevent forgetting

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025 Continual Pre-training of Language Models Ke et al., 2023
Continual Learning of Natural Language Processing Tasks: A Survey, Ke et al., 2023
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Adaptation — Four Most Popular Methods

Base Model

—p

Continual Pre-
training (CPT)

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

Instruction
Tuning (IT/SFT)

Supervised
Preference
Learning (SPL)

Reinforcement
Learning (RL)

A




Adaptation — Four Most Popular Methods

<|begin_of_text|>

SEC Finalizes ARS Settlement
to Provide $7 Billion in
Ligquidity to Wachovia
Investors...

<|end_of_text|>

Continual Pre-training

Inject or emphasize target
knowledge (e.g., domain
knowledge)

<|system|>

You are a helpful assitant
<|end|>

<|user|>

How many helicopters can you eat?
<|end|>

<|assistant|>

{Answer goes here}

Instruction Tuning

Formatting and
instruction following

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

<|prompt|>what are the minimum
lease payments in 2022
<|end|>

<|rejected|>

$17,188 / %$34,356 * 100
= 49,98%.

<|end|=>

<|chosen|>

$17,188 / $34,356 *x 100
= 49,99%.

<|end|=

Sup. Preference
Learning

Align to human or Al
preferences

salesforce

<|prompt|>

I'm not sure if it's the right
to do and could use some
outside opinions.

TL;DR:

<|end|>

Reinforcement

Learning
Boost performance on
complicated (and

verifiable) tasks (e.g.,
reasoning)

21



Adaptation — Example Training Workflow

- Base Model IT Model

E.g., Tulu 1,2; Instruct GPT

abc
— IT

|| B

Training language models to follow instructions with human feedback, Ouyang et al., 2022
Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

>  SPL =
Post-trained

Reward Model

Model

Supervised Preference
Learning

SPL

T Instruction Tuning

i
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Adaptation — Example Training Workflow

X N (New Synthetic Completions)

Initial l

IT model
— Base Model

LT IT

E.g., Tulu 3; Llama3.1

Tulu 3: Pushing Frontiers in Open Language Model Post-Training, Lambert et al., 2025
Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

IT Model
> SPL -
Post-trained
Model
.. ¢+ | Reward Model/
LLM Judge
T Instruction
Tuning

SPL Supervised Preference “ ‘

Learning




Adaptation — Example Training Workflow

E.g., DeepSeek-R1

|| B

Base Model IT Model
Post-trained
Model
Curated Data
RL
Instruction
IT
> IT .
Tuning
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning, Deepseek-Al, 2025 RL Re I nfO rceme nt

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025 Lea M | ng A



Adaptation — Example Training Workflow

— Base Model CPT+

. —p
: IT

|| B

Demystifying Domain-adaptive Post-training for Financial LLMs, Ke et al., 2025

Continual Pre-training T
CPT

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

Instruction
Tuning

PL

SPL

>

Post-trained
Model

Supervised Preference
Learning
i

E.g., FINDAP




Adaptation — Example Training Workflow

- Bace Model General LLM Verifier

E.g., FLAME

>

T L

|| B

...... We should expect more to come

IT

Foundational Autoraters: Taming Large Language Models for Better Automatic Evaluation, Vu et al., 2024

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025

Reward Modeling—Specialized LLM
Verifier

Instruction ‘
Tuning “



Research Questions in
LLM Adaptation
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Data Perspective Model Perspective

Methods: What are the
basic methods and their
variants of LLM adaptation?

Seed Data: What gives a
good data mixture and how
to obtain high-quality data?
(often limited in amount)

Training Workflow: What is
the effective workflow to
connect those basic
methods?

Data Recipe: Given the
limited amount of seed
data, how to synthesize or
construct high-quality data?

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025
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Curate Prompts \
N

( Curate Texts

(F-_% Verifiable Text\ © General

Task

Domain
=4 Web Text Task

\km ) Exercise )

Concept @ IF & Chat

Core Capabilities Evaluation Training Recipe Seed Data

What capabilities do you How do you measure the How do you construct What seed data should be

actually care about? progre.s:s.toward targeted useful data from your used to implement your
capabilities? seed data and what is training recipe?

your model recipe?

Ke, Ming, Joty - Adaptation of LLMs Tutorial, NAACL 2025
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